5.2.3 (a) Let $S = \operatorname{Span}(\mathbf{x}, \mathbf{y})$, where $\mathbf{x} = (x_1, x_2, x_3)^T$ and $\mathbf{y} = (y_1, y_2, y_3)^T$. Let A be the matrix with rows \mathbf{x}^T and \mathbf{y}^T . Show that $S^{\perp} = N(A)$.

Proof: By definition of S and A, we know that S = RS(A). It follows that $S^{\perp} = (RS(A))^{\perp} = N(A)$.

(b) Find the orthogonal complement of the subspace of \mathbb{R}^3 spanned by $(1,2,1)^T$ and $(1,-1,2)^T$.

Solution: Based on part (a), we may let $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}$. The subspace spanned by the given vectors is simply RS(A). So we want N(A). Computing a basis for N(A) in the usual way, we find that $N(A) = \operatorname{Span}(-5, 1, 3)^T$. (When computing an arbitrary nullspace vector from the reduced matrix, you might have found something like $\mathbf{x} = (-5s/3, s/3, s)$, but don't forget that any multiple of \mathbf{x} will serve.

5.2.4 Let S be the subspace of \mathbf{R}^4 spanned by $\mathbf{x}_1 = (1, 0, -2, 1)^T$ and $\mathbf{x}_2 = (0, 1, 3, 2)^T$. Find a basis for S^{\perp} .

Solution: The simplest solution is to construct a matrix A, with rows \mathbf{x}_1^T and \mathbf{x}_2^T , and to then find a basis for $N(A) = RS(A)^{\perp}$. Details are suppressed, but one basis for N(A) is given by $\mathbf{x}_3 = (2, -3, 1, 0)^T$ and $\mathbf{x}_4 = (1, 2, 0, -1)^T$.

- **5.2.5** Let $P_1 = (1, 1, 1), P_2 = (2, 4, -1), \text{ and } P_3 = (0, -1, 5).$
 - (a) Find a nonzero vector **N** that is orthogonal to $\overline{P_1P_2}$ and to $\overline{P_1P_3}$. **Solution**: Let $\overline{P_1P_2}$ and $\overline{P_1P_3}$ be the rows of a matrix A, and find a vector from N(A). One such vector is $\mathbf{x} = (8, -2, 1)^T$.
 - (b) Find the equation of the plane determined by the three points.

Solution: We may choose any of the three given points to assume the role of P_0 . Choosing P_1 , we get 8(x-1)-2(y-1)+(z-1)=0. Choosing P_2 , we get 8(x-2)-2(y-4)+(z+1)=0. Choosing P_3 , we get 8x-2(y+1)+(z-5)=0. Each of the three simplifies to 8x-2y+z=7.

5.2.6 Is it possible for a matrix to have the vector (3,1,2) in its rowspace and $(2,1,1)^T$ in its nullspace? Explain.

Solution: No, it is not possible. The given vectors are not orthogonal. If this is unclear, reread Theorem 5.2.1 and its proof.

5.2.7 Let \mathbf{a}_j be a nonzero column of an $m \times n$ matrix A. Is it possible for \mathbf{a}_j to be in $N(A^T)$?

Solution: Certainly not. If it were a zero column, yes, but we are told otherwise. The only vector that lies in $CS(A) \cap N(A^T)$ is the zero vector.

5.2.11 Prove: If A is an $m \times n$ matrix and $\mathbf{x} \in \mathbf{R}^n$, then either $A\mathbf{x} = \mathbf{0}$ or there exists $\mathbf{y} \in RS(A)$ such that $x^T y \neq 0$.

Proof: It might be useful to draw the same diagram used in class while discussing Corollary 5.2.5. Suppose that $\mathbf{x} \in \mathbf{R}^n - N(A)$. Since $(RS(A))^{\perp} = N(A)$ and $\mathbf{x} \notin N(A)$, it follows from the definition of orthogonal complements that there must be at least one vector $\mathbf{y} \in RS(A)$ for which $\mathbf{x}^T\mathbf{y} \neq 0$.